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Phase behavior of coherent tunneling through a quantum dot:
A consideration of the off-diagonal elastic coupling
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Abstract. The electron transmission amplitude through a quantum dot is studied by considering all elastic
coupling elements, not only the diagonal elements Γjj , but also the off-diagonal elements Γij . The Breit-
Winger formula is extended to multiple states under the above consideration. The phase of the transmission
amplitude exhibits a gradual increase by π along a resonance peak and an abrupt phase drop by π near
the center between two consecutive resonance peaks which can be explained completely in a single-electron
picture. When the temperature T = 0 the phase drop is absolutely abrupt; when T 6= 0 the phase drop
is on a energy scale much smaller than both Γjj and kBT . In addition, at the phase-drop-point, some
interesting manifestations are predicted.

PACS. 73.40.Gk Tunneling – 85.30.Vw Low-dimensional quantum devices (quantum dots, quantum wires
etc.) – 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers)

1 Introduction

Very recently, Schuster et al. performed the first success-
ful phase measurement of the electron transmission am-
plitude through a quantum dot, by using a four-terminal
phase-coherent system [1]. They found three striking fea-
tures: (1) the phase behavior is similar for all resonance
peaks; (2) the phase rises by almost π along a single res-
onance peak on a energy scale about half-peak-width Γ ;
(3) a sharp phase drop by π occurs near the center of
two consecutive resonance peaks on a energy scale much
smaller than Γ or kBT (here T is the temperature). Us-
ing a formula of the summation of displaced Breit-Winger
amplitudes [2], Schuster et al. well explained the phase in-
crease part (feature (2)), but failed to explain the phase
drop part (feature (3)) [1].

Several theoretical works have been devoted to the
study of the phase behaviors, related to the experiment by
Schuster et al. [1] or a little earlier experiment by Yacoby
et al. [3]. Oreg and Gefen addressed that an inherently
finite temperature many body effect causes a phase drop,
but the feature (3) still can not be completely explained
[4]. References [5–9] investigated the relevant but differ-
ent system, a two-terminal modified Aharonov-Bohm ring,
and found that the phase only takes one of the two values,
either 0 or π, same as the prediction by Büttiker [10], and
the recent observation by Yacoby et al. [3].
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In the present work, instead of studying a four-
terminal system as Schuster et al., we simply con-
sider a system with a single quantum dot coupled to
two single-channel leads through two barriers, which
is the essential part of their experiment. By using
the nonequilibrium-Green-function technique, the elec-
tron transmission amplitude through the quantum dot,
t(ε), is derived. Different from the previous works [11,
12], here we consider not only the diagonal elastic cou-
pling elements Γjj , but also the off-diagonal elements Γij
which are usually neglected. It turns out that the off-
diagonal elements are the essential factor to the abrupt
phase drop (feature (3)). In fact we find, as long as
the off-diagonal elements being considered, the abrupt
phase drop on a energy scale much smaller than both Γ
and kBT is bound to emerge. It should be emphasized
that this mechanism is completely a single-electron ef-
fect. Moreover, we find that the transmission probability
T (T = |t|2) has almost no change whether the off-diagonal
elements being included or not, as long as the weakly cou-
pling case is considered. This means that the phase be-
havior of the transmission amplitude is critically related
to the off-diagonal elements, but the probability is almost
independent with them. Finally, some interesting mani-
festations, one referred to as the resonant blockade, are
predicted.

The outline of this paper is as follows. In Section 2, the
model is presented and the nonequilibrium Green function
is used to derive the transmission amplitude through the
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quantum dot. In Section 3, we study the phase behavior
of the transmission amplitude in detail. Some other inter-
esting manifestations are predicted in Section 4. And a
brief summary is presented in Section 5.

2 Model and formulation

The system under consideration is described by the fol-
lowing Hamiltonian H = H0 +H1; where

H0 =
∑
k∈L

εka
†
kak+

∑
p∈R

εpb
†
pbp+

∑
i

εic
†
ici+

∑
i,j(i6=j)

U

2
c†icic

†
jcj

H1 =
∑
k,i

vkia
†
kci +

∑
p,i

vpib
†
pci +H.c. (1)

here a†k (ak), b†p (bp), and c†i (ci) are creation (annihilation)
operators in the left lead, the right lead, and the dot, re-
spectively. In this paper only the single-channel leads have
been considered. The quantum dot is considered with mul-
tiple energy levels by index i, and the intra-dot electron-
electron Coulomb interaction is introduced.H1 models the
electron tunneling between the dot and the two leads. Let
|ε, L(R)〉 denotes the electron state with energy ε in the
left (right) lead [13]. The transmission amplitude t(εf , ε),
defined as the propagating amplitude that an electron of
energy ε incident from the left lead will tunnel through
the dot into the right lead with energy εf , can therefore
be written as

t(εf , ε) = 〈εf , R|S|ε, L〉 (2)

where S = exp[−i
∫
dtH1(t)].

Following Wingreen et al. [13], one has

〈εf , R|S|ε, L〉 = −i
∑
i,j

V ∗iR(εf )VjL(ε)

∫ ∞
−∞

∫ ∞
−∞

dt1dt2

~2

× eiεf t2/~e−iεt1/~
{
−iθ(t2 − t1)〈0|ci(t2)c†j(t1)|0〉

}
(3)

where |VjL(ε)|2 ≡
∑
k |Vkj |

2δ(ε − εk), |ViR(εf )|2 ≡∑
p |Vpi|

2δ(εf−εp), and |0〉 is the vacuum state. By defini-

tion, −iθ(t2−t1)〈0|ci(t2)c†j(t1)|0〉 = −iθ(t2−t1)〈0|{ci(t2),

c†j(t1)}|0〉 ≡ Grij(t2, t1). Noticing Grij(t2, t1) = Grij(t2 −
t1, 0), then the transmission amplitude t(εf , ε) can be ex-
pressed as

t(εf , ε) = −i
∑
ij

2πV ∗iR(ε)VjL(ε)δ(ε− εf)Grij(ε) (4)

where Grij(ε) is the Fourier transformation of Grij(t, 0):

Grij(ε) =
∫
dt
~ exp{iεt/~}Grij(t, 0). For simplicity, we

only consider the symmetric barriers: VjL(ε) = VjR(ε).
Defining the elastic coupling between the dot and

the left (right) lead: Γ
L(R)
ji = 2πVjL(R)V

∗
iL(R)(ε) =

2π
∑
k(p) Vk(p)jV

∗
k(p)iδ(ε − εk(p)), and the matrix Γ =

ΓL + ΓR = 2ΓL. Then t(εf , ε) is given by t(εf , ε) =

− i
2δ(ε − εf)Tr[Γ (ε)Gr(ε)], and the transmission ampli-

tude t(ε) is obtained as

t(ε) = −
i

2
Tr[Γ (ε)Gr(ε)]. (5)

Then to calculate Tr[ΓGr], we use the equation of motion
(EOM): ε〈〈A|B〉〉r = 〈〈[A,H]|B〉〉r + 〈{A,B}〉, and the
Dyson’s equation:

εGrij = δij + εiG
r
ij + U

∑
l(l6=i)

〈〈cic
†
l cl|c

†
j〉〉

r

+
∑
k

V ∗ki〈〈ak|c
†
j〉〉

r +
∑
p

V ∗pi〈〈bp|c
†
j〉〉

r (6)

〈〈X|c†j〉〉
r = 〈〈X|X†〉〉r0

∑
l

Vk(p)l〈〈cl|c
†
j〉〉

r (7)

where X = ak or bp, and 〈〈ak|a
†
k〉〉

r
0 = 1/(ε − εk + i0+)

is the exact Green’s function of the electron in the leads
without the coupling between the leads and the dot. For
the closure of the EOM, we take the following decoupling

approximation: 〈〈cic
†
l cl|c

†
j〉〉

r = nl〈〈ci|c
†
j〉〉

r [14], here nl is
the occupation number of the state-l on the dot. Under the
wide bandwidth approximation [11]: Γij(ε) is a constant,
independent with ε. Then one obtains equation of Grij(ε):

(ε− εi − Un
′

i)G
r
ij +

i

2

∑
l

ΓilG
r
lj = δi,j (8)

where n
′

i =
∑
l(l6=i)

nl. From equation (8), one has

∑
i

ΓjiG
r
ij +

i

2

∑
il

ΓjiΓil

ε− εi − Un
′

i

Grlj =
Γjj

ε− εj − Un
′

j

·

(9)

Notice that ΓjiΓil = ΓjlΓii, and Tr[ΓGr] =
∑
ij

ΓjiG
r
ij ,

then from equation (5, 9) we finally obtain

t(ε) =
−i/2[∑

j

Γjj

ε−εj−Un
′
j

]−1

+ i
2

· (10)

Equation (10) is the central result of this work. It can
be considered as an extended version of the Breit-Winger
formula for multiple states with the off-diagonal elastic
couplings, and exactly satisfies 0 ≤ T (ε) ≡ |t(ε)|2 ≤ 1
(here T (ε) is the transmission probability). If there is only
one state in the dot, then equation (10) will simply return
to the Breit-Winger formula.

It should be emphasized that we have considered all
elastic coupling elements, including the diagonal elements
Γjj and the off-diagonal elements Γij usually neglected
in the previous works [11,12]. Since Γij is not indepen-
dent with each other, they satisfy ΓijΓnm = ΓimΓnj and
|Γij |2 = ΓiiΓjj , so only the diagonal elements Γjj present
in equation (10). If one neglects the off-diagonal elements,
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Fig. 1. (a) The transmission probability T vs. ε. (b) The phase
of the transmission amplitude vs. ε. Assuming the dot has 10
states with ∆ε = 1, εj = j, Γjj = 0.1, and at T = 0. The
resonance peaks from the 4th to the 7th are shown in the fig-
ure. The solid curve and the dotted curve correspond the case
including and not including the off-diagonal elements Γij , re-
spectively. The difference is clear in (b), but hard to see in
(a).

then equation (5) reduces to t(ε) = − i
2

∑
j ΓjjG

r
jj . From

equation (8), one has Grij(ε) = δi,j/(ε− εj −Un
′

j + i
2Γjj),

and the transmission amplitude reduces to

t
′

(ε) =
∑
j

−iΓjj/2

ε− εj − Un
′

j + iΓjj/2
, (11)

which is simply the summation of the displaced Breit-
Wigner amplitudes [1].

3 The phase behavior

Based on equation (10), we can study the phase behavior
of the transmission amplitude. In order to see that the
phase drop is not originated from the intra-dot Coulomb
interaction, we simply take U = 0. First, we consider the
case at zero temperature and Γjj independent with state-j
(Γjj ≡ Γ ). Figure 1a shows the transmission probability
T (ε) (T (ε) = |t(ε)|2) vs. ε, exhibiting a series of resonance
peaks. The position of the resonance peaks is determined
by
∑
j Γjj/(ε − εj) = ∞, i.e. ε = εj . The solid curve in

Figure 1b shows the dependence of the phase of the trans-
mission amplitude with ε, arg(t(ε)) − π/2. It is clearly to
see that: (1) the phase behavior is similar for all consec-
utive resonance peaks; (2) along a single resonance peak
the phase monotonously increases by π on an energy scale

Fig. 2. The phase of transmission amplitude vs. ε for Γjj
dependent with state-j, by setting Γ11 = 0.05, and Γjj =
1.1Γj−1,j−1. Other parameters are the same as in Figure 1.
The dotted curve is the case of Γjj independent with state-j
(Γjj = 0.1) for comparison.

about Γ ; (3) an abrupt phase drop by π occurs near the
center between two consecutive resonance peaks. These
phase behaviors, in particular, the feature (3), are well
consistent with the experiment by Schuster et al. Notice
that the phase drop is abrupt at T = 0. At the abrupt-
drop-point the transmission amplitude is down to zero.

For comparison, the transmission probability and the
phase of the transmission amplitude without considering
the off-diagonal elements are shown in Figures 1a, 1b (dot-
ted curves). Noticing that the dotted curve and the solid
curve can not be distinguished in Figure 1a, which means,
whether including or not the off-diagonal elements Γij ,
the transmission probability almost has no change. This is
why the theoretical results only involving the transmission
probability are in good agreement with the experiments in
the previous works without including the off-diagonal ele-
ments Γij [11,12]. However, if one neglects the off-diagonal
elements, the phase variation will be greatly affected (see
Fig. 1b), especially for the phase drop part (near the cen-
ter between two consecutive resonance peaks). A phase in-
crease will be followed by a phase drop on the same energy
scale about Γ , and no abrupt phase drop happens. Obvi-
ously, the off-diagonal coupling elements play an essential
role for the phase behavior of the electron transmission
through a quantum dot.

In the case of Γjj depending on j, the phase variation
has no qualitative change. In particular, the abrupt phase
drop by π still remains (see Fig. 2), only the location of
the abrupt-drop-point will be slightly shifted, determined
by the equation of

∑
j Γjj/(ε− εj) = 0.

Next, we consider the case of finite temperature (T 6=
0). Following Oreg and Gefen, in order to obtain the phase
shift we have to calculate the transmission amplitude with
the help of a reference path, tref , the latter is assumed in-
dependent with ε [4]. Then the magnitude of this interfer-
ence term can be easily obtained as 2Re[t∗ref tRL], where

tRL =

∫
dε

2π

{
−∂f(ε)

∂ε

}
t(ε) (12)

and f(ε) is the Fermi distribution function. Figure 3 shows
the phase of tRL vs. the gate voltage vg. Due to kBT <
Γ in the experiment by Schuster et al. [1], here we take
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Fig. 3. The phase vs. vg for T 6= 0, with kBT = 0.05. Other
parameters are the same as in Figure 1. The points 1, 2, 3,
and 4 correspond to the phase of π/4, 3π/4 (phase increasing),
3π/4, π/4 (phase decreasing), respectively. The dotted curve
corresponds to the case of T = 0 for comparison.

kBT = 0.05, Γ = 0.1. A sharp drop of the phase still exists
near the center between two consecutive resonance peaks,
but not completely abrupt as the case of T = 0 (dotted
curve). And from the phase φ = 3π

4 (point-3) to the phase
φ = π

4 (point-4) the energy only changes about 0.01 which
is much smaller than both Γ and kBT . In contrast, along
a single resonance peak the phase increases a bit slower
and the resonance peak gets a little wider than the case
of T = 0. From the phase φ = π

4 (point-1) to the phase

φ = 3π
4 (point-2), the energy changes about 0.2 which is

about the same value as kBT + Γ .
It should be pointed out: (1) We have neglected the

intra-dot Coulomb interaction (by setting U = 0) in
the above calculation. In fact, if the interaction is in-
cluded, the results will qualitatively have no change and
the abrupt phase drop by π still exist (not shown here).
(2) In this work we only studied a special case with single-
channel leads. For multi-channel leads, although the rela-
tion for the elastic couplings |Γij |2 = ΓiiΓjj is no longer
valid, but for each channel-m, the corresponding relation
|Γmij |

2 = Γmii Γ
m
jj still holds. We expect, it is not impossible

that the abrupt phase drop is still valid for the general case
with multi-channel leads. Of course, much more works are
needed to reach a conclusive result.

4 Some other interesting manifestations

Besides of the above mentioned effects of the off-diagonal
elastic elements on the phase behaviors, we also find some
other interesting manifestations, which will be discussed
in the following.

First, Figure 4 shows the conductance dI/dv vs. the
gate voltage vg at T = 0 [15]. Surprisingly, near the center
of the two consecutive peaks the conductance dI/dv ex-
actly becomes to zero no matter how large Γ is. This result
will be referred to as the resonant blockade. The main fea-
tures of the resonant blockade are: (1) if Γ larger than the
interval between the resonance peaks (the strongly cou-
pling case), the region of the Coulomb blockade vanishes,

Fig. 4. dI/dv vs. vg for the strongly coupling case. The two
solid curves correspond to Γjj = 2 and Γjj = 5, respectively.
The dotted curve corresponds to the weakly coupling case with
Γjj = 0.1 for comparison. Other parameters are the same as
in Figure 1 (in the units of e = ~ = 1).

Fig. 5. For the case with only two intra-dot states (ε0 = 0 and
ε1 = 1): (a) |Gr01|

2 vs. ε, the three curves correspond to Γ = 6
(solid curve), Γ = 4 (dotted curve), and Γ = 3 (dashed curve),
respectively. (b) n(ε) vs. ε, the solid curve and the dotted curve
correspond to Γ = 6 and Γ = 0.2, respectively.

and the region of the resonance tunneling expands to all
the values of vg. However, the resonant blockade still exists
so that it leads to a valley of the conductance. (2) When Γ
smaller than the interval between the resonance peaks (the
weakly coupling case), the resonant blockade region and
the Coulomb blockade region become overlapped. If only
the Coulomb blockade functions, the transmission proba-
bility still has a small but not zero value in that region.
However, due to the resonant blockade, the transmission
probability and the conductance dI/dv will be zero and
the reflection probability be one at the complete resonance
at T = 0. It is worth to mention that the vg at which
dI/dv = 0 is just the same one as the phase-drop-point.

Second, let us consider the squared modulus of the
retarded Green’s function, |Gr01(ε)|2, which describes the
propagating probability of an electron from an intra-dot
state-0 tunneling to the leads and back to another intra-
dot state-1. Figure 5a shows the dependence of |Gr01(ε)|2

with ε for the strongly coupling case. A sharp peak
emerges at the center between ε0 and ε1, i.e. at the phase-
drop-point. This means that the electron strongly tunnel
back and forth through the coupling with the leads be-
tween state-0 and state-1 at that value of ε.



Q. Sun and T. Lin: Phase behavior of coherent tunneling through a quantum dot 917

Third, we study the spectral function n0(ε), i.e. the
imaginary part of the Green’s function ImG<00(ε) [16] while
the chemical potential µL, µR of the leads much larger
than ε0 and ε1. When Γ < ∆ε (the weakly coupling case),
n0(ε) vs. ε has a peak at ε0, almost the same as the
case without including the off-diagonal elements Γij (see
the dotted curve in Fig. 5b). On the other hand, when
Γ > ∆ε (the strongly coupling case), n0(ε) vs. ε emerges
a peak near the center between ε0 and ε1 (see solid curve
in Fig. 5b). This result significantly depends on the off-
diagonal elements Γij , due to the fact that the two states
with the energy of ε0 and ε1 are strongly coupled through
the leads in this case.

5 Conclusions

In this paper, the transmission amplitude through a
quantum dot is studied. Different from the previous
works, the off-diagonal elastic couplings have been in-
cluded, and the Breit-Winger formula has been extended
to multiple states case under this consideration. The
theory of the present work can describe the whole
variation of the phase, including the phase increasing
part and, in particular, the phase abrupt drop part.
At zero temperature the phase drop is completely
abrupt; for finite temperature the phase drop is on a
scale much smaller than both Γ and kBT . Moreover,
at the phase-drop-point we also find: (1) the conduc-
tance dI/dv or the transmission probability T exactly
vanish at T = 0, no matter how large Γ is; (2) |Gr01|

2

emerges as a peak at that point; (3) the spectral function
n0(ε) also has a peak near that point for the strongly
coupling case. These predictions might be checked ex-
perimentally by a setup like the one by Schuster et al.
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